Phosphatidate phosphatase, a key regulator of lipid homeostasis.

نویسندگان

  • Florencia Pascual
  • George M Carman
چکیده

Yeast Pah1p phosphatidate phosphatase (PAP) catalyzes the penultimate step in the synthesis of triacylglycerol. PAP plays a crucial role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate and its product diacylglycerol. The cellular amounts of these lipid intermediates influence the synthesis of triacylglycerol and the pathways by which membrane phospholipids are synthesized. Physiological functions affected by PAP activity include phospholipid synthesis gene expression, nuclear/endoplasmic reticulum membrane growth, lipid droplet formation, and vacuole homeostasis and fusion. Yeast lacking Pah1p PAP activity are acutely sensitive to fatty acid-induced toxicity and exhibit respiratory deficiency. PAP is distinguished in its cellular location, catalytic mechanism, and physiological functions from Dpp1p and Lpp1p lipid phosphate phosphatases that utilize a variety of substrates that include phosphatidate. Phosphorylation/dephosphorylation is a major mechanism by which Pah1p PAP activity is regulated. Pah1p is phosphorylated by cytosolic-associated Pho85p-Pho80p, Cdc28p-cyclin B, and protein kinase A and is dephosphorylated by the endoplasmic reticulum-associated Nem1p-Spo7p phosphatase. The dephosphorylation of Pah1p stimulates PAP activity and facilitates the association with the membrane/phosphatidate allowing for its reaction and triacylglycerol synthesis. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipin family proteins--key regulators in lipid metabolism.

BACKGROUND Proteins in the lipin family play a key role in lipid synthesis due to their phosphatidate phosphatase activity, and they also act as transcriptional coactivators to regulate the expression of genes involved in lipid metabolism. The lipin family includes three members, lipin1, lipin2, and lipin3, which exhibit tissue-specific expression, indicating that they may have distinct roles i...

متن کامل

Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p

Lipins are evolutionarily conserved phosphatidate phosphatases that perform key functions in phospholipid, triglyceride, and membrane biogenesis. Translocation of lipins on membranes requires their dephosphorylation by the Nem1p-Spo7p transmembrane phosphatase complex through a poorly understood mechanism. Here we identify the carboxy-terminal acidic tail of the yeast lipin Pah1p as an importan...

متن کامل

Glycerolipid synthesis in rat adipose tissue. II. Properties and distribution of phosphatidate phosphatase.

The properties and subcellular distribution of phosphatidate phosphatase (EC 3.1.3.4) from adipose tissue have been investigated. The enzyme was assayed using both aqueous phosphatidate and membrane-bound phosphatidate as substrates. When measured with aqueous substrate, activity was detected in the mitochondria, the microsomes, and the soluble fraction. Mg(2+) at low concentration stimulated t...

متن کامل

Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by sphingoid bases.

The regulation of Saccharomyces cerevisiae membrane-associated phosphatidate phosphatase (3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) activity by sphingoid bases was examined using Triton X-100/lipid-mixed micelles. Sphingosine, phytosphingosine, and sphinganine inhibited purified preparations of the 104- and 45-kDa forms of phosphatidate phosphatase in a dose-dependent manner. The structu...

متن کامل

Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis.

PA2 phosphatase (PAP3; 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) catalyzes the Mg2 -dependent dephosphorylation of PA, yielding DAG and Pi (Fig. 1) (1–3). In de novo lipid synthesis, the DAG generated from the PAP reaction is utilized for the synthesis of the phospholipids PE and PC via the Kennedy pathway and for the synthesis of TAG (Fig. 1) (3). The enzyme substrate PA is also used fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1831 3  شماره 

صفحات  -

تاریخ انتشار 2013